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Abstract. The phase transition temperature T, of the q-state Potts model with ferromagnetic 
interactions J ,  and antiferromagnetic ones J ,  in the two respective directions of a 2D lattice 
is calculated by the high-temperature series expansion ( HTSE) of the appropriate staggered 
susceptibility as well as by the cluster variate approximation (CVA).  For q = 3 the HTSE 
result in the range of IJ, l / J ,  =S 1.5 shows a good coincidence with the Kosterlitz-Thouless- 
type phase transition temperature calculated on the prescription by Ostlund which is given 
by 1/16.rr =exp(-2P,J,) coth(-P,J,/2), P = I/kT,. The CVA result shows similar 
behaviour of T, to that of the Migdal-Kadanoff renormalisation group method obtained 
by Kinzel er al, but it is considered to be less reliable than the HTSE result. 

1. Introduction 

The ordered phase of the q-state antiferromagnetic Potts model (AFPM) has been found 
to have interesting features caused by its infinitely degenerate ground state with the 
zero-point entropy of the order of N (the number of the Potts spins). On the cubic 
lattice, q = 3 and 4, AFPM reveals a continuous phase transition, which is shown by 
the Monte Carlo simulation (Banavar et a1 1980), and the transition temperature is 
calculated by the high-temperature series expansion (Yasumura and Oguchi 1984). 
For the model of q = 3, simulations performed by Banavar et al and by Ono (1986) 
suggest that the low-temperature phase is a floating phase in which the correlations 
decay algebraically with the distance of the spins. 

On the square lattice, on the other hand, q 3 3, AFPM has been shown to reveal no 
phase transition at non-zero temperatures (Baxter 1982, Yasumura and Oguchi 1984). 
Kinzel et al(1981) introduced a q-state Potts model on an anisotropic two-dimensional 
( 2 ~ )  lattice with ferromagnetic interactions J,( >0) in the x direction and antiferro- 
magnetic ones J,(<O) in the y direction. In this paper I report the results of some 
estimates of the phase transition temperature of this system. 

The Hamiltonian of this system is written as 

R = - J X  6 ( 0 t ,  (1) 
( k J ) \  ( b J ) ,  

where u,(=O, 1 , .  . . , q - 1) is the Potts spin on the lattice site i, 6 is the Kronecker 
delta and ( ( 6  = x, y )  represents the nearest-neighbour ( N N )  pairs in the 6 direction. 
This model has also an infinitely degenerate ground state, but its zero-point entropy 
is of the order of v% (the number of the rows in the lattice), which is much smaller 
than that of the isotropic AFPM. 
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Kinzel et al showed that this system has an ordered phase and gave a conjectural 
expression of the critical temperature T, by the method of the Migdal-Kadanoff 
renormalisation ( M K R ) ,  which is given by 

where pc = l /kTc and k is the Boltzmann constant. 
In the case of q = 3 another conjectured expression of T, is given by Truong (1984) 

by considering the symmetry properties of the partition function, which is written as 

exp(PcJy) - 2  e x p ( P c J V ) - e x p [ P c ( J , + J , , ) 1 =  1. (3) 

Computer analysis has also been done for the model of q = 3 (Houlrik et a1 1983, 
Selke and Wu 1987), but gives rather lower T, than that obtained by ( 2 )  or (3). 

Another result for this problem is given by Ostlund (1981) who investigated the 
asymmetric clock model by the method of the free-fermion approximation ( FFA) which 
is a technique introduced by Villain and Bak (1981) to investigate the phase transition 
of the A N N N I  model. Ostlund showed that his model reveals a phase transition of the 
Kosterlitz-Thouless (1973) type and the low-temperature phase is a floating phase 
with algebraic decay of correlations. Our model in the case of q = 3 is included in 
Ostlund’s investigations, and we can obtain an estimation of its T, by the method of 
FFA according to the Ostlund-Villain-Bak prescription. 

In § 2 we estimate the second-order phase transition temperature T, of the system 
represented by the Hamiltonian (1) by the calculation of a high-temperature series 
expansion ( HTSE) of an appropriate staggered susceptibility. This T, can be estimated 
also by the cluster variate approximation (CVA), which will be shown in 0 3. The phase 
transition temperature to the floating phase in Ostlund’s picture is also shown in § 4, 
where these results will be compared and discussed. 

2. High-temperature series expansion (HTSE) 

In this section we will calculate T, of the system with the Hamiltonian (1) by the HTSE 

of the paramagnetic susceptibility to the staggered field applied in accordance with 
the correlations relevant to the low-temperature phase. Kinzel et al (1981) showed 
that these correlations should be those that are ferromagnetic along the x direction 
and antiferromagnetic (ferromagnetic) along the y direction with an odd (even) number 
of lattice spaces. We will calculate the staggered correlation along the sublattices A 
and B shown in figure 1. 

Here we take the external staggered field H as a q-component vector 
( H I ,  H’,. . . , H4), which gives a Zeeman energy term, 

to be added to (1) where Z i G A ( X i E B )  represents the sum over the site i on the sublattice 
A( B). This type of Zeeman field is adopted by Yasumura and Oguchi (1984) in the 
calculation of HTSE of the isotropic AFPM, though the two sublattices A and B are 
determined differently there. 
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+ A  

Figure 1. The two sublattices A and B. The full line shows the ferromagnetic bond and 
the broken line the antiferromagnetic one. 

The components of H must satisfy the following condition, because the perfectly 
disordered spin has zero Zeeman energy; 

H"=O.  
9 

C r = 1  

The linear response of the free energy of 
easily shown to be written as xS1H2/2, where 

( 5 )  

the paramagnetic phase to this field is 

&I = S(1,  a,) - l /q.  (7)  

The method used to calculate the high-temperature series expansion of xSt defined 
by (6) is similar to that of Yasumura and Oguchi (1984) and the details are not 
presented here. Now we expand xSf as 

I have calculated the coefficients a ,  up to the seventh order which are shown in the 
appendix, where A represents the absolute ratio of the interactions, IJyI/Jx. 

In order to determine T,, I have applied the ratio method ( R M )  and the Pad6 
approximation (PA) (Gaunt and Guttmann 1974). In RM, the ratio plot ( a , / a n - ,  against 
l / n )  is linearly extrapolated to l / n  + 0, and the limit a , / a , - ,  + kTc/Jx  gives the critical 
temperature. In PA, we have applied the [ p, p ]  approximation ( p  = 2 ,3 )  to the logarith- 
mic derivative of (8): ( d l d p )  logxSt, whose pole P c ,  if it exists, will be the inverse of 
the critical temperature. 

Some of the results for the q = 3 model are shown in table 1 .  In the range of A s 1.5, 
the Pad6 [ p,  p ]  approximation ( p  = 2 , 3 )  shows a good convergence. The RM result 
gives a little larger T,, though it is considered to be consistent with the PA result. In 
the vicinity of A = 1.6 and when T, is small, PA does not converge well. When A a 1.7, 
PA and RM give inconsistent values of T,. In the range of larger A, the ratio plot lies 
on a winding curve and does not fit a straight line. When A a 2, therefore, the 
extrapolated value of RM is not considered to be reliable. I have shown the result of 
the Pad6 [ 3 , 3 ]  approximation in figure 2. 
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Table 1. k T , / J ,  estimated by R M  and PA ([2,2] and [3,3] approximation) 

0.2 0.39 * 0.02 0.38 0.18 
0.4 0.47 i 0.03 0.44 0.43 
0.8 0.54 f 0.03 0.48 0.47 
1.2 0.53 i 0.05 0.50 0.48 
1.6 0.57 * 0.05 0.36 0.46 
2.0 0.60 i 0.05 0.40 0.41 
2.5 0.65 f 0.07 0.13 0.31 

-7% . 
L" 
-r 

1 0  

0 5  

0 1 2 
h 

Figure 2. The phase boundary of the 9 = 3 model, k T c / J x  is drawn as a function of 
A = IJ, I /  J, .  A refers to the conjecture by the Migdal-Kadanoff renormalisation of Kinzel 
er a/ (1981), B to that of Truong (1984) by the symmetry considerations, C shows the 
present result of the high-temperature series expansion with Pad6 [3,3]  approximation, D 
shows that of the cluster variate approximation and E is drawn after the free-fermion 
approximation method of Ostlund (1981). Recent Monte Carlo data by Selke and Wu 
(1987) are also shown in the error bars. 

For the q 2 4 model, RM gives no trustworthy result of T,, but PA shows good 
convergence except in the case that the solution of T, is very small. The solution of 
the Pad6 [3,3] approximation for the models of q = 4, 5 and 6 is shown in figure 3. 

3. Cluster variate approximation (CVA) 

In the previous section we determined the second-order phase transition temperature 
T, of the system with the Hamiltonian (1) by HTSE. I f  this transition leads to a 
sublattice-type long-range ordered phase, its T, can be estimated also by CVA as will 
be shown in this section. 

The calculation follows the effective Hamiltonian method (Oguchi and Ono 1966) 
which is an improved version of the Bethe approximation method. 

The sublattice-type order can be expressed by the effective internal field. Here the 
two sublattices A and B are taken in the same way as in 8 2 (figure 1). The notation 
L A A  (LBs) denotes the effective field acting on a spin belonging to the sublattice A(B) 
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x 
Figure 3. The phase boundary of the q = 4,5 and 6 models. The full curves show the HTSE 

result (Padi  [3 ,3 ]  approximation), while the dotted and broken lines refer to CVA and 
M K R  results respectively. 

through the ferromagnetic bond from one of its N N  spins on the sublattice A(B), and 
L B A  ( L A B )  shall denote that acting on a spin belonging to A(B) through the antiferromag- 
netic bond from one of its N N  spins on B(A), where L ( = L A A ,  L B B ,  L A B  or L B A )  is a 
q-component vector ( L ' ,  L2, . . . , L 4 )  and it gives a Zeeman energy 

4 
- L"6; 

'?=I 
(9) 

for the Potts spin ui, where the Kronecker delta 6 (  a, ui) is written as 6,". The component 
of the effective field satisfies the condition similar to ( 5 ) ,  that is Z,L" = 0. 

The effective density matrix of the spin U, on the sublattice A is written in terms 
of L in the following form: 

as well as in the form of the partial trace of the density matrix of the Bethe cluster 
centred on the site i :  

+ (L;A+2L",,)(6," + 63")+ ( L i e + Z L " , ) ( 6 , *  + 64"))) ( 1 1 )  

where the site 1 and 3 is the i N N  site located on the sublattice A and the site 2 and 
4 is that on the sublattice B, and Trj =E:,=, ( j  = 1 ,2 ,3 ,4 )  is the trace over the Potts 
spin uj. 

Since two expressions (10) and (1 1) must be equivalent under this approximation, 
we put 

-- Pil I Pil -- 
Tri pi' Tri pi1' 

which gives a self-consistent equation for L. 
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Equation (12) has a trivial solution L A A  = LBB = L A B  = LBA = 0 which represents the 
paramagnetic phase. A non-zero solution for L will represent the ordered phase. The 
linear approximation in L is applied near the second-order phase transition tem- 
perature, where we can put L A B  = - A L A A  and L B A  = - A L B B ;  A = -JI / J,. Then we get 

(13) L B B  X ( q + y )  - A  Y ( q  +XI - ( q  + X)(q + Y )  lim -= 
T-Tc-0 L A ,  2AX(q+ Y ) - 2 Y ( q + X ) - A ( q + X ) ( q +  Y) 

where 

X = exp(pcJ,) - 1 

Y = exp( pJ,) - 1 

( 1 3 ~ )  

(13b) 

which gives T, = I /  kp,. 
Taking the central site i of the Bethe cluster on sublattice B, we get a similar 

equation to (13 )  where A and B are substituted with each other. Hence the LHS of 
(13 )  equals 1 or  - 1 .  Taking the former limit of L B B / L A A ’  1 ,  we obtain an equation 
for the second-order critical temperature from the paramagnetic phase to the ferromag- 
netic one. Putting A = -1, we get an equation for the isotropic ferromagnetic Potts 
model that has been given in Wang and Wu (1976). 

In our model where A is positive, we should take the limit L B B / L A A +  - 1  in order 
to detect the sublattice-type staggered order. Equation (13)  yields 

X Y 
( 1  + 2 A ) p -  (2 + A)-= 1 + A. 

q + x  4 +  y 

The solution of (14) is shown in figures 2 and 3 .  We can see that this result has 
almost the same character as the M K R  result given by (2).  In  the limit of large A,  both 
the estimation of T, given here and that given by M K R  tend to the same constant: 
J , / [ k  log(q - l)] .  In the case of q = 2 (k ing  model), the solution of ( 2 )  gives the 
rigorous T,; nevertheless, that of (14) with finite A does not. 

4. Results and discussions 

In this paper we have calculated the second-order phase transition temperature T, of 
the q-state Potts model on the anisotropic ZD lattice where ferromagnetic interactions 
J,  and antiferromagnetic ones J,. are arranged in the x and y direction respectively. 
We have calculated it by HTSE in § 2 and by CVA in § 3. These results are shown in 
figures 2 and 3 as a function of the absolute ratio of the interactions A = IJ,.I/J,. In  
these figures the full curve shows the result of the Pad6 [ 3 , 3 ]  approximation of the 
HTSE and the dotted curve shows the CVA result; the M K R  result obtained by equation 
( 2 )  is also shown by the broken curve. 

The CVA result shows almost the same behaviour as the M K R  one and has the same 
limit of T, tending to J , / [ k  log(q - l ) ]  as A + W .  On the other hand T, given by HTSE 

has a maximum value which is about a third of the value of the large-A limit of the 
former approximations. The T, estimated by PA of HTSE vanishes when A grows large, 
where, however, the result of R M  does not converge well and we cannot conclude that 
the PA result gives the true T,. In the case of q = 3 (figure 2)  the result of the Pad6 
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[ 3 , 3 ]  approximation shows a quite irregular behaviour in the neighbourhood of A = 1.6. 
This irregularity is due to the truncation of the series of (8). Similar irregularities are 
observed also in other calculations using the Pad6 approximation (Obokata er a1 1967). 

In the case of q = 3 ,  Truong’s conjectured critical temperature given by ( 3 )  is shown 
in the same figure by dotted and broken curves. It is close to the CVA line when A is 
not so large, but in the limit of A +CO Truong’s T, grows infinitely large. This asymptotic 
behaviour is similar to that of the critical temperature of the q = 2 (Ising) model whose 
ground state does not degenerate infinitely. 

Ostlund’s (1981) arguments are also available to obtain an estimation of T, of our 
system in the case of q = 3 .  In his theory the partition function at low temperatures 
is approximately represented by the transfer matrix of a one-dimensional massless 
free-fermion system when the vortex-type excitations are neglected. These excitations 
destabilise the free-fermion state and cause the Kosterlitz-Thouless-type phase transi- 
tion. This transition temperature T,= 1/Pc is given by the celebrated equation of 
Kosterlitz (1974) which is written as 

(15) 
1 - ( . r r P C J e R -  1) = exp(-2P,Jx) co th ( -hJ , )  2T 

where Jeff = 9 / 8 4 ,  is the effective exchange interaction of the corresponding XY 
model, and the LHS of this equation reduces to ( 1 6 ~ ) - ’ .  The RHS of (15) is the sum 
of the fugacities of the vortices. The derivation of (15) is similar to those performed 
by Villain and Bak (1981) to derive T, of the A N N N I  model and details are not shown 
here. The solution of (15) is also shown in figure 2 by a thin line. 

This solution based on the free-fermion approximation ( FFA) indicates the existence 
of a Kosterlitz-Thouless phase transition and suggests that the low-temperature phase 
is a floating phase with algebraic decay of correlations (Ostlund 1981). This suggestion 
is supported by the numerical calculation of the transfer matrix of the quantum version 
of this model (Herrmann and Martin 1984) as well as by the Monte Carlo study on 
the clock-model version (Selke and Yeomans 1982). 

For A d 1.5, T, obtained by the HTSE (Pad6 [ 3 , 3 ]  approximation) and the FFA 

coincides very well. Therefore we consider that the T, of these calculations gives a 
good estimation in this range of A and that Ostlund’s suggestion for the low-temperature 
phase is valid. It should be noted that the HTSE gives a lower limit of T, at which the 
fluctuation in the paramagnetic phase diverges while the FFA gives an upper limit of 
T, at which the postulated low-temperature phase with a topological order becomes 
unstable against the free vortex excitations. 

When A b 1.5, the HTSE gives no conclusive result for T,. The PA curve is located 
much lower than the FFA curve while the RM result seems to support the FFA in 
1.56 A d  1.8. In the range of larger A ( A  3 2 )  the fit of the ratio plot to a straight line 
is not good and we cannot estimate T, by R M .  On the other hand, equation (15) is 
considered to become more accurate as A grows larger and non-topological excitations 
omitted in Ostlund’s theory increase in energy. In the limit of large A, this equation 
gives kT,/ J,  = l/log(4&) 2 0.51 which is much smaller than the similar limit of the 
CVA and M K R  result kTc/Jx = l/log 2 = 1.44. For the estimation of the phase transition 
temperature to the floating phase, a calculation based on the assumption of long-range 
order such as CVA will not hold good. 

The Monte Carlo renormalisation result ( kT,/Jx = 0 . 5 3  * 0.3  for q = 3 ,  A = 1 in our 
notation) by Houlrik et a1 (1983) and the recent data of the Monte Carlo study by 
Selke and Wu (1987) shown in figure 2 with error bars are favourable to the HTSE and 
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FFA result at A = 1.0. But for other values of A we need more precise numerical 
estimations. 

For the q 5 4 model the HTSE result gives a lower bound of T,.  Figure 3 affirms 
the existence of the low-temperature phase in the models of q = 4, 5 and 6, but no 
convincing estimate of T, has been obtained. A method to apply FFA to the q = 4 
model with further approximations and to determine T, taking account of the vortex- 
type excitations will be reported in a subsequent paper by Yasamura and Ueno. 

The phase transition of the Potts model with additional next-nearest-neighbour 
interactions in the y direction of this model is being investigated analytically as well 
as by the Monte Carlo simulation by Yasamura and Ono and will be reported soon. 

Appendix 

The coefficients a, of the high-temperature series expansion of the staggered susceptibil- 
ity (8) are calculated to have the following form: 

a,= 1 

a2=4A(A +2)/q2+(-A2-t l ) / q  

a3 = 8A ( A 2 +  3A + l ) / q3  + 4A ( - A 2  - A + 1)/ q2+  ( A 3  

a4 = 16A2(A2+4A +3)/q4+4A(-3A3 -6A2+ A + 2)/q3 

a, = 2(A + l ) / q  

1)/3q 

+ A(7A3 +4A2 -6A +4)/3q2+ ( - A 4 +  1)/12q 

a5 = 32h2(A3 + 5 A 2 +  6A + l ) / q 5  +4A2( - 8 A 3  - 24A2 -9A + 1 l ) / q 4  

+ 2A ( 15A4 + 21A3 - 10A2 - 6A + 7)/3q3 

+ A(-3A4- A3+2A2 -2A + 1)/3q2+ ( A S +  1)/60q 

a6 = 8 A 3 ( 8 A 3  + 48A2+ 79A + 32)/q6+ 2A2( -40A4 - 160A’ - 139A ’+ 56A + 23)/q5 

+ 2A ’( 52A4+ 120A + 1 5 A 2  - 80A + 33)/3q4 

+A(-18A5- 18A4+13A3+4A2-11A+6) /3q3  

+ A (3 1 A + 6A4 - 1 SA + 20A2 - 15A + 6)/90q2 + ( - A 6  + 1)/360q 

a 7 =  16A3(8A4+56A3+116A2+18A+8)/q7 

+4A2( -48h - 240A4- 319A3 - 7A2+ 83A + 1)/q6 

+ 4A ’( 80A + 260A4 + 165A - 182A + 27)/3q5 

+A2(-80A5- 144A4+9A3+ 119A2-93A +21)/3q4 

+ A ( 129A6+ 93A5 - 87A4 - 15h3 + 95A2 - 81A + 31)/45q3 

+ A(-9A6- A5+3A4- 5 A 3 +  5 A 2  -3A + 1)/90q2+ ( A 7 +  1)/252Oq. 
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